18061042899
当前位置:主页 > 技术支持 > RBF神经网络理论在柴油机控制中的应用

RBF神经网络理论在柴油机控制中的应用

2020-11-10
来源: 礼德动力

柴油机具有高度非线性和时变性的特点,是一种复杂的动力机械。 并且柴油机往往在变速、变负荷、变环境温度等复杂工况下工作,由于工作环境的变化,会导致柴油机的状态参数发生变化。为了保证柴油机在各种工况下仍能保持良好的运行状态,有必要对柴油机的状态参数进行调整。 目前的柴油机转速控制普遍采用PID控制算法。当柴油机在非标定工况下工作时,控制参数无法保证其稳定运行,这严重影响了调速器的控制效果以及柴油机的性能。因此,有必要研究一种可以根据柴油机工作状态实时调节控制参数的控制算法[1-3]。目前,电磁执行器式的位置控制式发动机仍大量应用于市场,但电磁执行器式的位置控制式发动机控制效果差,难以达到现代市场的需求。

为了提高调速器的自适应性能,前人做了许多工作。贾梦银[4]介绍了一种基于改进BP神经网络的在线整定PID参数怠速发动机转速控制算法。孙剑波[5]进行了大型低速二冲程柴油机神经网络系统仿真,结果表明:采用神经网络可以提高控制效果。总结前人的工作,很多人将BP神经网络和传统PID相结合以求对PID控制算法进行优化。然而,初始权值对BP神经网络的计算结果影响很大[6]。这会影响到柴油机的控制效果。当使用BP-PID控制算法时,初始权值是通过实验数据标定得到的[7]。因此,需要选择一种不依赖于初始权值的控制算法从而节省人力物力。

本文采用新型控制算法对此类发动机进行优化,以解决目前市场上仍在大量使用的电磁执行器式的位置控制式发动机的控制问题。在本文中,基于RBF神经网络和传统PID控制算法,设计了一种自适应RBF-PID控制算法,并建立仿真模型验证其可行性并验证这种自适应算法在柴油机转速控制上的优越性。

1 RBF-PID自适应算法原理

1.1 核心算法设计

本文采用的RBF神经网络包括3层:输入层、隐含层和输出层[8]。根据柴油机特性和转速控制的需要,以转速、转速偏差和偏差变化率作为输入层,以PID控制参数作为输出层[9]。因此,神经网络的输入层与输出层的神经元个数均为3[10]。为了达到更好的逼近效果,避免过多的数据操作,根据经验,采用5个隐层神经元[11]。神经网络的结构如图1所示。

图1 神经网络结构
Fig.1 Structure of neural network

隐含层的神经元激活函数由径向基函数构成。由隐含层神经元组成的阵列运算单元称为隐含层节点[12]。每个隐含层节点包含一个中心向量,中心向量和输入参数向量X具有相同的维数[13],它们之间的欧氏距离d可表示为

d=‖x(t)-cj(t)‖

(1)

式中cj(t)是隐含层第j个隐含层节点所包含的中心点的坐标向量:

(2)

隐含层的输出由一个非线性的激活函数组成:


j=1,2…,m

(3)

式中:bj为一个大于零的标量,代表了高斯基函数的宽度;m为隐藏层中的节点数。

RBF神经网络的权值为

ω=[ω1,ω2,…,ωn]T

(4)

RBF神经网络的输出为

y(t)=ωTh=ω1h1+ω2h2+…+ωmhm

(5)

神经网络逼近误差指标为

(6)

根据梯度下降法,调整隐含层和输出层之间权值的方法由式(7)、(8)中给出:

(7)

ωj(t)= ωj(t-1)+Δωj(t)+α(ωj(t-1)-

ωj(t-2))

(8)

高斯基函数的宽度调整方式为

(9)

bj(t)= bj(t-1)+Δbj+α(bj(t-1)-

bj(t-2))

(10)

中心点的调整方式为

(11)

cji(t)= cji(t-1)+Δcji+α(cji(t-1)-

cji(t-2))

(12)

目前,柴油机转速控制中广泛采用含有曲轴转速和喷油泵齿条位移的双闭环控制算法[14]。电磁执行器的线性度很好,不受环境因素的影响。因此,双闭环中的内环即齿条的位置的控制,可以采用传统的PID算法[15]。柴油机是一种复杂的非线性时变动力机械,因此双闭环中的外环即转速的控制,可以采用经网络自适应PID控制算法[16]。本文中所用的双闭环控制策略如图2所示。

2 发动机模型建立

建立了柴油机平均值模型,该模型主要气缸充气效率子模型、柴油机进气子模型、热效率子模型及柴油机动力输出子模型组成。其中,缸内充气效率可视为柴油机转速的函数,通过柴油机的试验数据表即可得到[17]

在发动机进气流量仿真模型中,忽略了残余气体系数,气体流量可表示为

(13)

式中: ηv为气缸充气效率,P3为进入气缸空气的压力, V为发动机气缸总容积,n为柴油机转速,T3为进入气缸的空气温度,Rg为理想气体常数。

图2 RBF-PID控制算法工作原理
Fig.2 RBF-PID governor working principle

指示热效率是曲轴转速与空燃比的函数;空燃比对热效率的影响远大于曲轴转速的影响。所以本文可以只考虑柴油机空燃比对指示热效率的影响,可通过实验标定得到。

发动机的扭矩被假定为一个恒定转矩在一个工作周期内作用于曲轴,等效于一个工作周期内的指示扭矩。因此柴油机的指示扭矩表示为

(14)

则:

(15)

式中: qmf为燃料质量流率, kg/s;Hu—燃料低热值, MJ/N·m3

柴油机摩擦力矩模型分为理论模型和经验模型两种[18]。柴油机摩擦力矩的理论分析与柴油机的润滑状况、工况和环境条件有关。较为复杂,很难得到符合真实柴油机情况的理论模型。因此,我们不考虑复杂的摩擦力矩理论模型,只使用经验公式来描述的平均摩擦转矩和速度之间的经验关系:

(16)

式中: Pf为平均摩擦压力, MPa;Cm为平均活塞速度, m/s;V为柴油机排量, L。

通过分析达朗贝尔原理,导出了柴油机的力学模型:

(17)

根据以上建立的仿真模型,建立了柴油机转速控制系统的仿真模型,如图3所示。

图3 调速系统模型
Fig.3 Model of governor

建立的柴油机仿真模型如图4所示。

在该模型中,RBF-PID自适应控制算法是通过S函数实现的,即通过在模拟过程的仿真,并参与柴油机调速系统的仿真过程。

3 实验系统设计及结果讨论

本文所采用的柴油发电机组调速试验系统包括柴油机、发电机、调速器、自动加减载系统和计算机。采用自动加载系统控制发电机的负荷,使柴油机在不同的负载工况下工作,为调速器的调速性能实验创造了实验条件。柴油发电机转速控制实验系统示意图如图5所示。

为了验证RBF神经网络算法的可行性,进行了一系列的实验。瞬态调速率和转速稳定时间通常用于评估电子调速器的性能。以表1所示的二级电站性能指标作为评价标准。即转速稳态波动率在0.4%以下,瞬态调速率在7%以下,转速稳定时间在3 s以内。

图4 柴油机模型
Fig.4 Model of diesel engine

图5 柴油发电机转速控制实验系统
Fig.5 Diesel engine generator speed control experiment system

实验结果
Table 1 the experiment results

3.1 RBFBP神经网络仿真及实验对比

为了验证初始权值对RBF-PID控制算法和BP-PID控制算法的影响,在突变负载的条件下,随机选取多组不同的初始权值进行实验,取其中具有代表性的5组(效果最好、瞬态调速率最大、稳定时间最长等)进行对比分析。

从图6和图7两组图片可以得出:当改变加载过程中的初始权值时,加减载过程中两种不同控制算法的转速稳定时间和超调量都将发生变化。从实验标定得到的最优初始权值开始,逐步调整初始权值,两种控制算法的转速控制效果都会不同程度地变差。然而,比较图6和图7中的几组曲线,可以看出BP-PID控制算法的控制效果变化较大。相比之下,虽然RBF-PID控制算法的控制效果也发生了一定的变化,但变化幅度较小,仍然在保持柴油机稳定运行可接受的范围之内。

由此可以得出,BP-PID控制算法相比于RBF-PID控制算法对标定好的初始权值依赖更大。 因此,当外界环境发生较大变化时,采用BP神经网络控制算法,需要调整初始权值以满足控制要求,而RBF-PID控制算法采用未经标定的初始权值也可以满足控制要求。这表明RBF-PID控制算法具有更好的鲁棒性。

3.2 仿真验证及与常规PID的对比实验

为了验证自适应转速控制策略的可行性,在采用最佳初始权值的条件下对起动、突加载荷和突卸载荷3种情况进行了仿真,并进行了实验验证。 由图7可以看出BP-PID算法与RBF-PID算法在最优权值时的结果基本相同,因此只对RBF-PID算法与常规PID的结果进行对比分析。3种情况下的仿真与实验对比结果如图8中的(a)、(b)、(c)所示。自适应调速控制算法与常规PID算法的对比实验结果如图8中的(d)、(e)、(f)所示。具体实验数据如表1所示。

下面将分别对起动、突变负载两种情况进行分析:

1)起动过程

对D6114柴油机,其起动过程的控制流程如图9所示。

图8中的(a)图显示了仿真数据和实验数据的比较。从图8(a)可以看出,仿真数据与实验数据吻合较好。

如图8(d)所示,相比于普通PID控制算法,神经网络控制算法控制的发动机在起动过程中转速波动较小,加速到700 r/min所需时间更短。而相比于神经网络控制算法,起动过程中,普通PID的转速超调量较大。可以看出,神经网络控制算法在起动过程中具有更好的控制效果。

图6 RBF-PID控制算法和BP-PID控制算法仿真数据对比
Fig.6 Simulation data of comparison between RBF-PID control algorithm and BP-PID control algorithm

图7 RBF-PID控制算法和BP-PID控制算法实验数据对比
Fig.7 Experimental data of comparison between RBF-PID control algorithm and BP-PID control algorithm

图8 RBF-PID控制算法和BP-PID控制算法实验仿真数据对比
Fig.8 Result of simulation verification and comparison with normal PID experiments

图9 柴油发电机起动控制流程
Fig.9 Diesel engine generator start control process

2)突变负载

加载过程中仿真数据和实验数据的对比如图8(b)所示。RBF神经网络控制算法和普通PID控制算法在加载过程中的对比如图8(e)所示。

减载过程中仿真数据和实验数据的对比如图8(c)所示。RBF神经网络控制算法和普通PID控制算法在减载过程中的对比如图8(f)所示。

从图8(b)、(c)可以看出,在加载和减载的过程中,仿真数据与实验数据吻合较好。 这说明建立的模型是准确的。当比较图8(e)、(f)中的两条曲线时,可以得出:神经网络可以根据转速的变化实时地对控制参数进行优化。与普通PID相比,RBF-PID算法在加载和减载过程中,瞬态调速率较小,转速稳定时间也较短。

4 结论

1)本文所设计的RBF-PID发动机转速控制算法可以根据转速的变化实时地调整控制参数,达到优化控制性能的目的。

2) RBF神经网络控制系统对初始权值依赖较小,具有更强的鲁棒性。将RBF神经网络和PID控制结合起来,可以获得更好的控制效果。

3) 由于RBF神经网络具有自适应能力,因此其可以根据转速、转速偏差和偏差变化率实时调整控制参数,转速自适应控制得以实现。在仿真和实验的过程中,RBF神经网络自适应PID控制器的性能要优于传统的PID控制器,该控制算法具有提高柴油机电子调速器的调速性能的能力。可在柴油机电子调速器开发中得到广泛应用。